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The extinction of the contact process for epidemics in lattice models with quenched disorder is analyzed in
the limit of small density of infected sites. It is shown that the problem in such a regime can be mapped to the
quantum-mechanical one characterized by the Anderson Hamiltonian for an electron in a random lattice. It is
demonstrated both analytically �self-consistent mean field� and numerically �by direct diagonalization of the
Hamiltonian and by means of cellular automata simulations� that disorder enhances the contact process, given
the mean values of random parameters are not influenced by disorder.
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I. INTRODUCTION

The spread of epidemics in complex networks such as
biological populations and computer networks is of great
current interest, both for practical applications and from a
fundamental point of view �1–6�.

This is one of the issues of the theory of nonequilibrium
phase transitions �1,2� and the theory of complex networks
�3,4�. The problems of interest include the question about the
existence of a critical regime separating invasive �active� and
noninvasive �absorbing� states of the system and, if such a
transition exists, how it depends on internal and external pa-
rameters and also what the universal features of the transition
are �see, e.g., �7��.

In one of the simplest models of epidemics, all the nodes
are divided into two classes: infectious �I� and susceptible
�S� �8�. The epidemic spreads by a contact process according
to which an infected node can transfer infection to another
susceptible node with typical infection rate w and recover
with typical recovery rate � becoming again susceptible �the
SIS model�. The system undergoes a phase transition with
variation of the dimensionless parameter, �=w /�, from the
absorbing ����c� to active state ����c�. The critical value
is �c�Z−1 �3,7�, with Z being the typical number of links per
node �coordination number�.

Usually, the infection and recovery rates are assumed to
be node independent. However, in real systems, the values of
w and � can vary from node to node �quenched disorder�.

Investigations of contact processes in systems with quenched
disorder over recent years �1,2,9–17� have resulted in some
rather intriguing findings. For example, it has been suggested
that the disorder can change the universality class of the
model �18,19�. However, the situation is far from being com-
pletely understood, and the aim of this paper is to investigate
the influence of a general form of quenched disorder on the
dynamics of the contact process in the absorbing state. Using
a combination of a simple epidemiological model with meth-
ods from condensed matter physics, we show how disorder
in the infection or recovery rates influences the long-time
dynamics �decay time� of epidemics in the absorbing state.
This is of practical importance in determining the time to
extinction of epidemics within this state. We also identify a
lower bound for �c and show how the degree of disorder
influences the magnitude of the extinction rate.

We consider the dynamics of the contact process far in the
absorbing state when the problem can be mapped to the
quantum-mechanical one described by the disordered Hamil-
tonian of the Anderson type �see, e.g., �20�� and an approxi-
mate method �self-consistent mean field� can be applied. The
spectrum of the Hamiltonian under this approximation is
then used in the analysis of the long-time dynamics of the
system. The advantage of the approach is in the possibility of
incorporating a general type of disorder in the analysis while
the disadvantage is due to the rather severe restriction of
being in the absorbing state �dilute regime for concentration
of infected nodes�. Our main result is that the disorder slows
down the long-time dynamics of the system given that the
mean values of the random values stay the same as in or-
dered systems. The approximate analytical results are sup-
ported by exact numerical analysis using a cellular automata
approach.

The paper is organized in the following manner. The for-
mulation of the problem is given in Sec. II. The solutions in
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the dilute regime both for ordered and disordered cases are
presented in Sec. III followed by discussion in Sec. IV. The
conclusions are made in Sec. V.

II. FORMULATION OF THE PROBLEM

Consider a set of N nodes �sites� connected to each other
by links �infection paths�. Each node i can be in one of two
states: infected �occupied by an “excitation” and character-
ized by occupation number ni=1� or not infected �empty
with ni=0�. The occupation number ni changes from 0 to 1
as a result of infection from an occupied node j occurring
with infection rate wji and from ni=1 to ni=0 due to natural
recovery with rate �i. Any state of the system is characterized
by the set of occupation numbers, �n���n1 , . . . ,nN�. Bearing
in mind the stochastic nature of the infection and recovery
processes it is convenient to characterize the system by the
state vector 	P�t�
, the components of which are the prob-
abilities of finding the system in different states at time t,
	P�t�
= 	P�n��t�
, where n=1, . . . ,2N runs over all the possible
states of the system. The time evolution of the state vector is
governed by the master equation describing the conserved
probability flow �7�,

�t	P�t�
 = L̂	P�t�
 , �1�

where L̂ stands for the non-Hermitian Liouville operator, the
nonzero elements of which describe the transitions between
the states with different numbers of occupied nodes.

It is convenient to make a linear transformation of the
state coordinates �change of basis� from Pn1,n2,. . .,nN

to the
n-site probabilities,

P̄i�t� = �
nk�ni

Pn1,. . .,nk,. . .,ni,. . .,nN
�t�, P̄ij�t�

= �
nk�ni,nj

Pn1,. . .,nk,. . .,ni,. . .,nj,. . .,nN
�t�, etc., �2�

where P̄i�t� is the probability of finding node i in an occupied
�ni=1� state independent of the occupation of all other nodes.
This allows the master equation �1� to be recast in the fol-
lowing form:

�tP̄i�t� = − �iP̄i�t� + �
j�i

wji�P̄j�t� − P̄ji�t�� , �3�

where P̄j�t�− P̄ji�t� is the probability of finding the system
with the occupied jth node and the unoccupied ith node,
independent of the state of all other nodes. The single-site

probability P̄i�t� in Eq. �3� is coupled with the double-site

probabilities P̄ij�t�. A similar probability-balance equation

for P̄ij�t� contains the three-site probabilities and so on. This
makes the set of simultaneous equations to be coupled and
thus be nontrivial for analysis.

The lowest level of approximations in decoupling
schemes involves a complete ignorance of the double-site

occupations, P̄ij, in comparison with other terms in the mas-
ter equation �3�, which is possible if

P̄ij�t� � P̄j�t� or P̄ij�t� �
�i

wji
P̄i�t� , �4�

for each pair of communicating sites i− j so that the master
equation under these approximations transforms to the form

�tP̄i�t� = − �iP̄i�t� + �
j

wjiP̄j�t� �5�

and is hereafter referred to as the approximate master equa-
tion. The inequalities given by Eq. �4� are valid if the typical
recovery rate is much greater than the typical infection rate,
��w, and an epidemic dies out very quickly over the typical
time, �−1. In such a regime, the single-site probabilities are
small for the majority of sites practically for all times—i.e.,

P̄i�1—and this regime can be called a dilute regime for the
concentration of infected sites.

Therefore, making approximations given by Eq. �4� we
focus on the dynamics of the system far in the absorbing
state ����c�—i.e., where an epidemic will certainly become

extinct. Bearing in mind that the terms 	P̄ij �entering Eq. �3�
with a minus sign� reduce the infection rate due to a possible
simultaneous occupation of both communicating sites i and j
�the transmission of infection cannot occur between two sites
if both of them are already infected� we might expect that the
solution of approximate rate equation �5� exhibits the en-
hancement of an epidemic in the dilute regime. In fact, the
approximate master equation �5� on its own describes the
spread of an epidemic in the system of N nodes with multiple
reinfection of infected nodes where each node can be multi-

ply occupied by the “excitations” �infection� and P̄i has the
meaning of an occupation number which can be larger than
1.

The approximate master equation �5� similarly to the ex-
act one can also have solutions which behave differently as
t→
 depending on the typical value of the parameter �. In
fact, there exists a critical value �c

* for the approximate mas-
ter equation which separates the absorbing and active states
and this critical value �c

* is smaller than the critical value �c
for the exact master equation due to the nature of the ap-
proximations made. This allows the lower bound estimate,
�c

*, for �c to be found by solving the approximate problem
for a quite general type of disorder.

The state of the system in the dilute regime can be defined
in the subspace of the singly occupied sites spanned by the
orthonormal site basis 	i
 and is characterized by the state

vector 	P̄
= 	P̄1 , P̄2 , . . . , P̄N
 with components P̄i�t�= �i 	 P̄�t�
.
The master equation �5� can be recast as

�t	P̄�t�
 = Ĥ	P̄�t�
 , �6�

where Ĥ stands for the Liouville operator which now �under
assumption of symmetric infection rates, wij =wji� is Hermit-
ian and can be associated with the Anderson-like Hamil-
tonian �see, e.g., �20��

TARASKIN et al. PHYSICAL REVIEW E 72, 016111 �2005�

016111-2



Ĥ = − �
i

N

�i	i
�i	 + �
i�j

wij	i
�j	 , �7�

in which the recovery rates �i play the role of the on-site
energies and the infection rates wij can be associated with the
transfer �hopping� integrals. Both of these values are random
and this makes the further analysis nontrivial even in the
dilute regime. The topology of the underlying network of
sites, in principle, can be arbitrary but the simplest choice is
a regular D-dimensional lattice with nearest-neighbor inter-
actions only. Furthermore, for simplicity, we consider a
square lattice and thus the second sum in Eq. �7� runs for
each site over Z=4 its nearest neighbors only. It is worth
mentioning that if the on-site matrix elements satisfy the sum
rule �i=� jwij; then, the number of occupied sites is con-
served and the problem is equivalent to the random walk
problem on a lattice with random transition rates �21� or to
the scalar vibrational problem for a lattice with force-
constant disorder �22�. Notice also that decoupling of the
single-site probabilities can also be made in the nondilute

regime by assuming that P̄ij = P̄iP̄j—i.e., ignoring possible
correlations in occupation of the communicating sites. This
brings a nonlinearity to the problem which can be treated
within the mean-field approach for ideal lattices �7�.

III. SOLUTION

The formal solution of the problem given by Eq. �5� is
straightforward,

	P̄�t�
 = eĤt	P̄�0�
 = �
j

e�jt�e j	P̄�0�
	e j
 , �8�

where 	e j
= 	e1
j , . . . ,eN

j 
 and � j are the eigenvectors and ei-

genvalues of the Hamiltonian, respectively, Ĥ	e j
=� j	e j
.
Equivalently, this solution can be written via the Laplace

transform of the state vector, 	P̄���
=0

	P̄�t�
e−�tdt,

	P̄���
 = �� − Ĥ�−1	P̄�0�
 � Ĝ	P̄�0�


= �
j

�� − � j�−1�e j		P̄�0�
	e j
 , �9�

where Ĝ= ��−Ĥ�−1 is the resolvent operator.
We are interested in the time evolution of the total number

of infected sites,

I�t� =
1

N��
ii0

N

P̄i�t;i0�� �
1

N��
ii0

N

�i
	P̄�t;i0�
� , �10�

averaged over different realizations of disorder �angular
brackets� and/or over initial conditions �for concreteness, a

single site i0 is infected at t=0—i.e., P̄i�0; i0�=�ii0
� and its

Laplace transform,

I��� =
1

N
�
ii0

N

�Gii0
���
 . �11�

The other quantity of interest is the mean-squared displace-
ment of the epidemic,

�R2�t�
 =
1

N
�
ii0

N

Ri0i
2 �P̄i�t;i0�
, �R2���
 =

1

N
�
ii0

N

Ri0i
2 �Gii0

���
 ,

�12�

where Ri0i is the vector connecting site i0 with site i.
As follows from Eq. �8� the dynamics of the system in the

dilute regime is defined by the eigenspectrum of the Hamil-
tonian. The set of characteristic times �inverse eigenvalues�
controls the evolution of the system with different eigenval-
ues being important for different time scales. The long-time
dynamics of the system is defined by the maximum eigen-
value of the Hamiltonian, �max ��max�0 in the dilute re-
gime�, and our aim is to find an estimate for �max and how it
depends on the degree of disorder. The maximum eigenvalue
depends on all the recovery and infection rates, �max��i ,wij�,
and this obviously complicates its analytical evaluation. The
exact analytical solution of the problem in the general case is
not currently known and numerous approximate analytical
�see, e.g., �20,23�� and numerical �see, e.g., �24,25�� methods
have been developed for evaluation of the spectrum of dis-
ordered Hamiltonians. Below, we use one of the well-
developed self-consistent mean-field approaches �the homo-
morphic cluster approximation within the coherent potential
approximation �26,27�� to find the estimates for �max in the
case of off-diagonal disorder and compare these results with
the exact numerical calculations both for the Hamiltonian
used in the approximate approach and for the original prob-
lem �cellular automaton �CA� calculations�. Before analyzing
the disordered system, we start, however, with a trivial case
of an ideal crystalline lattice in order to illuminate our ap-
proach.

A. Ideal lattice

In the case of an ideal crystalline lattice, the probability
distribution functions are � functions ���i�=���i−�0� and
w�wij�=��wij −w0� and the translationally invariant solu-
tions of the eigenproblem are well known �see, e.g., �28��, so
that the eigenvectors are the Bloch waves characterized by
the wave vector k,

	ek
 = N−1/2�
i

eik·Ri	i
 , �13�

with Ri being the position vector of site i, and the eigenval-
ues are

��k� = − �0 + w0Sk, �14�

where Sk=� je
−ik·Rij �the sum is taken over j running over the

nearest neighbors to arbitrary site i� is the structure factor
and the wave vector k lies in the first Brillouin zone of the
reciprocal space so that �max=�k=0=−�0+Zw0.

The Laplace transform of the total number of infected
states is then �see Eq. �11�� I���= ��−�k=0�−1, and thus

I�t� = e�k=0t = e�−�0+w0Z�t. �15�

This means that in the dilute regime �=w0 /�0�1, the expo-
nent in Eq. �15� is negative and the total number of infected
states decays exponentially with time.
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Therefore, for an ideal crystalline lattice the critical value
of the parameter �=w0 /�0 obtained from the equation �max
=−�0+Zw0=0 for the system described by the approximate
master equation is

�cryst
* = Z−1, �16�

which gives �cryst
* =0.25 for a square lattice with nearest-

neighbor interactions only. This estimate is equivalent to the
standard �not self-consistent� mean-field estimate and, as ex-
pected, is less than the true critical value, �cryst�0.4122 �7�.

The Laplace transform of the mean-squared displacement
�R2���
 for ideal crystal in the dilute regime is given by the
expression �see Eq. �12�� �R2���
=w0a2Z��−�k=0�−2, with a
being the nearest-neighbor distance, and thus

�R2�t�
 = w0a2Zte�k=0t = w0a2Zte�−�0+w0Z�t. �17�

It follows from Eq. �17� that the mean-squared displacement
increases exponentially in the active state when ���cryst

*

�i.e., �max=�k=0�0� and exponentially decays with time in
absorbing state for ���cryst

* �i.e., �max�0�.

B. Disordered lattice

The problems become much harder for a disordered lat-
tice characterized by random infection and recovery rates. In
order to find the time dependence of the number of infected
sites and the mean-squared displacement for the contact pro-
cess we need to evaluate the configurationally averaged re-

solvent operator �Ĝ
 �see Eqs. �9�–�12��. This can be done
approximately for lattice models with certain types of disor-
der: namely, with diagonal disorder �disorder in the recovery
rates, �i�, off-diagonal disorder �disorder in transfer rates,
wij�, and for binary systems with substitutional disorder �two
species of sites randomly occupy the lattice sites �29��. One
of the successful approximate analytical approaches is the
self-consistent mean-field approach �coherent potential ap-
proximation �CPA�� which allows the main spectral features
of the disordered Hamiltonian and its eigenfunctions to be
modeled �see, e.g., �28��.

The main idea of the CPA is in replacement of the disor-
dered lattice by the ideal crystalline one which is character-
ized by the effective complex parameters �complex fields�—
e.g., by the effective recovery, �̃���= �̃����+i�̃����, and
transmission, w̃���= w̃����+iw̃����, rates which depend on
the eigenvalues � of the Hamiltonian and should be found
self-consistently. The self-consistency equation follows from
the requirement that a single defect placed in the effective
crystal does not scatter the effective crystalline eigenfunc-
tions if averaged over disorder.

In what follows, for concreteness, we consider the case of
off-diagonal disorder, when all the recovery rates are the
same, ��i�=���i−�0�, while the transfer rates are taken from
a uniform �box� distribution,

�wij� = ��2��−1 if w0 − � � wij � w0 + � ,

0 otherwise,
� �18�

where � is the half-width of the distribution, 0���w0, and
the mean value w̄ij coincides with the crystalline one, w̄ij

=w0. The particular form of the distribution �18� is not im-
portant for the method discussed below. The conclusions are
also applicable to any well-behaved distribution given that
the mean value coincides with the value for the ordered sys-
tem.

The disordered Hamiltonian �7� can be conveniently re-
written in the bond representation �22�

Ĥ = �
�ij�

�− Z−1�i	i
�i	 − Z−1� j	j
�j	 + wij	i
�j	 + wji	j
�i	� ,

�19�

where the summation is taken over all bonds �ij� in the sys-
tem. Such a form of the Hamiltonian allows the single non-
correlated scatterers �bonds� to be introduced in the absence
of the on-site disorder �the homomorphic cluster approxima-
tion �26,27��. The next step is to replace the above Hamil-
tonian with the effective non-Hermitian one,

H̃ˆ = �
�ij�

�− Z−1�̃	i
�i	 − Z−1�̃	j
�j	 + w̃	i
�j	 + w̃	j
�i	� ,

�20�

where the effective fields �̃ and w̃ are found from the follow-
ing two self-consistency equations �see Appendix A� �30�:

� Z−1��̃ − �0� ± �wij − w̃�

1 − �G̃ii ± G̃ij��Z−1��̃ − �0� ± �wij − w̃��� = 0. �21�

The averaging in Eqs. �21� is performed over random values
of transition rates wij distributed according to the probability
distribution given by Eq. �18�. The effective resolvent
�Green’s function� elements Gii and Gij can be expressed via
the ideal crystalline resolvent elements Gii

cryst of complex ar-
gument �see Appendix A�,

G̃ii��� =
w0

w̃
Gii

cryst�w0

w̃
�� + �̃� − �0� , �22�

G̃ij��� =
1

Zw̃
��� + �̃�G̃ii��� − 1� ,

which are well known for the square lattice �see, e.g., �28��.
The self-consistency equations �21� can be solved numeri-

cally and thus both effective fields can be found. Once the
complex effective fields �̃��� and w̃��� are known, then the
spectrum of the effective Hamiltonian can be found �see Fig.
1�, enabling the dynamics of the system in the dilute regime
within the self-consistent mean-field approach to be studied.

It can be shown that the total number of infected states
and the mean-squared displacement in the CPA obey the
equations �see Appendix B�

I�t� = −
1

�
Im �

�min���

�max��� e�t

� − �̃��,k = 0�
d�

= −
1

�
Im �

�min���

�max��� e�t

� + �̃��� − Zw̃���
d� �23�

and
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�R2�t�
 = −
1

�
Im �

�min���

�max���

e�t� �k
2�̃��,k�

�� − �̃��,k��2�
k=0

d�

= −
1

�
Im �

�min���

�max��� Za2w̃���e�t

�� + �̃��� − Zw̃����2d� , �24�

with the effective dispersion law

�̃��,k� = − �̃��� + w̃���Sk. �25�

The integration in Eqs. �23� and �24� is performed over the
band�s� of eigenvalues, �min�������max���, where the
imaginary parts of the effective fields are finite for ��0.

As follows from Eqs. �23� and �24� the long-time dynam-
ics of the system both for the number of infected nodes I�t�
and for the mean-squared displacement �R2�t�
 are defined by
the largest eigenvalue. The upper band edge �max��� can be
found within the CPA from the self-consistency equations
�21� by solving them for ���max��� where both effective
fields are real—i.e., F±�w̃� , �̃� ,��=0 with F± standing for the
left-hand side of Eqs. �21�. The analysis of the dependences
of the effective fields on � shows that the upper band edge
corresponds to the branching point at which the following
equation holds �see Appendix C�:

� �F+

�w̃�

�F−

��̃�
−

�F−

�w̃�

�F+

��̃�
�

�max���
= 0. �26�

The solution of Eq. �26� simultaneously with the self-
consistency equations �21� allows the position of the upper
band edge, �max���, to be found. The results of such an
analysis are shown in Fig. 2 �see the solid line� for a particu-
lar choice of parameter ���cryst

* �1. When all the transfer
rates are the same ��=0�, the maximum value coincides with
the crystalline upper band edge, �max/w0=−�−1+Z. When
the disorder is introduced to the system the upper band edge

shifts to larger values of � and thus the long-time dynamics
slows down. The value of the shift increases with increasing
degree of disorder characterized by the value of � �see Fig.
2�. This is a general effect that is independent of the type and
form �probability distribution functions� of disorder given
that the mean values of random parameters are the same as
for the ordered system. Indeed, any disorder brought to the
system is equivalent to introducing additional interactions
between the ordered eigenstates which unavoidably result in
the level-repelling effect for the bare �crystalline� eigenstates
�32� that is to the broadening of the spectrum. Therefore the
disorder-induced slowing down of the dynamics of the con-
tact process in the dilute regime is a general effect �if disor-
der does not influence the mean values of random variables�.

It is known that the spectrum of the Hamiltonian obtained
within the self-consistent mean-field approach usually repro-
duces very well the main features of the spectrum of the
Hamiltonian �see Fig. 1� excluding some special points like
singularities �e.g., the midband singularity� and band edges
�see the inset in Fig. 1�. For the eigenstates around the band
edges, the fluctuations of random parameters are essential
and they lead to strong localization of the eigenstates around
the band edges. In fact, the true �non-mean-field� density of
states shows exponentially decaying band tails instead of
sharp band edges typical for the mean-field crystals �see the
inset in Fig. 1�. The mean-field approach does not take into
account such fluctuations and thus the mean-field value of
�max is only the �low-bound� estimate of the true maximum
eigenvalue of the Hamiltonian, �max

* . The values of �max
* are

random values depending on a particular realization of dis-
order. We have calculated numerically �using the Lanczos
method� the distributions of the maximum eigenvalues for
system of different sizes �up to N=4000�4000 sites� and
different values of �. The results for ��max

* ���
 �averaged
over 500 disorder realizations� are shown in Fig. 2. The av-

FIG. 1. �Color online� The spectrum of the effective �dashed
line� and true �solid line� Hamiltonian �density of states� defined on
the square lattice with nearest-neighbor interactions �Z=4� in the
system with transmission rates uniformly distributed around the
mean value w0=1 with half-width �=1.0 and �0=30. The exact
spectrum was obtained numerically using the kernel polynomial
method �31� for a model of N=2000�2000 sites. The spectrum of
the crystalline Hamiltonian with all nearest-neighbor interactions
��=0� is shown by the dot-dashed line. The inset magnifies the
spectrum around the top of the band.

FIG. 2. �Color online� The dependence of the maximum eigen-
value �max evaluated using a mean-field approach �solid curve, la-
beled CPA� and �max

* calculated by direct diagonalization �DD,
circles for 4000�4000 and triangles for 2000�2000 lattices; the
error bars represent the standard deviations of the distribution of the
maximum eigenvalues� on the degree of disorder characterized by
the half-width of the box distribution � for �0=30 and w0=1. The
squares �labeled CA� represent the long-time decay rates �CA ob-
tained by the CA simulations, each data point corresponding to
approximately 5�1010 runs, on a 5�5 lattice. The inset shows a
version of the CA data scaled vertically to clarify the trend.
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eraged maximum eigenvalue depends on N �see Fig. 2� ap-
parently approaching some limiting value which is certainly
less than the band edge, −�0+Zw, for a crystal with all trans-
fer rates equal to w=w0+�.

IV. DISCUSSION

The main finding from our analysis is that the disorder
slows down the dynamics of the contact process in the dilute
regime when the system is far in the absorbing state given
that the mean values of the random parameters are the same
as for the ordered system. This conclusion is supported by
the exact solution for the contact process using the cellular
automaton simulations which were performed using a
continuous-time algorithm similar to the n-fold way �see,
e.g., �33��. The CA simulations were used for evaluation of
the inverse decay time for I�t→
� �see squares in Fig. 2�
which can be compared with �max �solid line� and �max

*

�circles and triangles in Fig. 2�.
First, we compare the approximate �CPA� long-time decay

rate �magnitude of the maximum eigenvalue� with the exact
�CA� one for an ideal �ordered� lattice. The dilute regime
approximation enhances the epidemic and thus results in
smaller long-time decay rates for I�t� and �R2�t�
. Indeed,
as follows from Fig. 2 for �=0, the exact value
�CA ��−26.215 for a particular typical choice of parameters,
�0=30 and w0=1� is smaller than the approximate one,
�max=−�+Zw0=−26. When disorder is incorporated in the
system the approximate decay rate decreases �eigenvalue in-
creases� with increasing disorder �see the solid line in Fig. 2�.
The exact value of the decay rate in the disordered system
also decreases ��CA increases; see the inset in Fig. 2� with
increasing disorder, thus confirming the tendency found in
the dilute approximation, although the increase in �CA is ap-
preciably smaller than the increase in �max and/or �max

* .
The value of the decrease in the decay rate with increas-

ing disorder, being proportional to the width of the tail,
	�max��=0�−�max��=w0�	 /w0�	�max��=0�−�max

* ��=w0�	 /
w0�0.1, is naturally small due to the assumptions made; i.e.,
the system is far in the absorbing state. However, the sign of
the effect is important and it cannot be predicted by the stan-
dard �not-self-consistent� mean-field analysis for the contact
processes �7� if the mean values in the disordered system
coincide with those for the ordered one. The other comment
concerns the dependence of the effect on the parameters of
the system. The broadening of the spectrum of the Hamil-
tonian does not depend on the mean recovery rate �0. This
means that if �0 increases, then the absolute magnitude of the
effect within the CA treatment, �CA��=0�−�CA��=w0�,
tends to �max��=0�−�max

* ��=w0�. If the recovery rate de-
creases, the system approaches the active state and approxi-
mations made for the dilute regime break down. Therefore
the analysis performed cannot be considered as a good ap-
proximation around criticality. In fact, as follows from the
preliminary CA analysis, the value of �CA��=0�−�CA��
=w0� increases with decreasing �0 and can reach zero around
criticality and even change sign �to be discussed further else-
where�; i.e., the introduction of disorder into a crystalline

system at criticality causes a transition to the absorbing state
rather than further into the active phase.

The last comment concerns a possible rough estimate of
the critical parameter �c for transition from the absorbing to
active state in disordered system. This estimate can be found
by solving the equation �max���=0 �or �max

* ���=0�, which
gives, �c��c

cryst�1+ ��max��=0�−�max��=w0�� /w0�. Of
course, the quality of this estimate is the same as that for the
crystal—i.e., �c

cryst=Z−1=0.25 as compared to exact value
�c�0.4122—and can serve only as a reliable low bound for
the critical value.

V. CONCLUSIONS

We have presented the analysis of the contact process in
the limit of low density of occupied �infected� sites �see Eq.
�4��—i.e., in the dilute regime for the infected sites when all
the correlation effects in occupation probabilities can be ig-
nored. This limit occurs, e.g., when the transfer rate is much
smaller than the infection rate, w��. The system resides in
the absorbing state for such a range of parameters and its
dynamics can be described by using the quantum-mechanical
tight-binding Hamiltonian. The disorder, in both the transfer
and recovery rates, can be incorporated into the formulation
which can be reduced to the eigenproblem for the Anderson-
like Hamiltonian �see Eq. �7��. The eigenproblem can be
solved approximately analytically �self-consistent mean
field� and exactly numerically, and thus the estimate of the
decay rate 	�max	 for long-time dynamics can be found for
different degrees of disorder �see Fig. 2�. The approximate
solution is supported by exact numerical analysis using the
cellular automaton approach. In particular, we conclude that
any type of disorder which does not change the mean values
of random parameters slows down the long-time dynamics of
the contact process occurring in the far-absorbing state.

APPENDIX A: SELF-CONSISTENCY EQUATION WITHIN
THE HOMOMORPHIC CLUSTER CPA

In this appendix, we derive the matrix self-consistency
equation within the homomorphic cluster CPA. Within the
self-consistent mean-field approach the disordered lattice is
replaced by an ideal lattice characterized by self-consistently
found effective complex parameters �fields�: namely, by the
effective recovery and transmission rates �̃��� and w̃���. The
effective Hamiltonian describing this effective lattice is
given by Eq. �20�. The effective fields are found within the
single-defect approximation according to the following stan-
dard procedure �28,29�. A single defect bond �ij� taken from
the random set of bonds characterizing the disordered lattice
is placed in the effective medium. The single-defect Hamil-

tonian H̃ˆ 1 is the sum of the ideal effective Hamiltonian and

the perturbation due to the defect bond, H̃ˆ 1=H̃ˆ +�V̂, where

�V̂ = − Z−1��0 − �̃�����	i
�i	 + 	j
�j	�

+ �wij − w̃�����	i
�j	 + 	j
�i	� . �A1�

This defect bond influences �scatters� the eigenfuctions of

TARASKIN et al. PHYSICAL REVIEW E 72, 016111 �2005�

016111-6



the original effective Hamiltonian. In the CPA, the effective
medium is tuned in such a manner that this scattering van-
ishes on average. In other words, the single-defect scattering

operator T̂, introduced by the equation T̂=�V̂+�V̂G̃ˆ T̂ �where

G̃ˆ = ��−H̃ˆ �−1 is the effective resolvent�, averaged over differ-
ent realizations of defect bond taken from the same probabil-
ity distribution as for a disordered medium should be zero—
i.e.,

�T̂
 = ��V̂�1 − G̃�V̂�−1
 = 0. �A2�

The above equation is the self-consistency matrix equation
where the scattering matrix in the site basis is

T̂ =
1

	1 − G̃�V̂	
��� + ��w2 − ��2�G̃ j j �w − ��w2 − ��2�G̃ij

�w − ��w2 − ��2�G̃ ji �� + ��w2 − ��2�G̃ j j

� ,

�A3�

with ��=−Z−1��0− �̃���� and �w=wij − w̃���. Bearing in

mind that G̃ii= G̃ j j and G̃ij = G̃ ji the scattering matrix can be
easily diagonalized by a similarity transformation to a new
basis, so that

T̂ =�
�� − �w

1 − �G̃ii − G̃ij���� − �w�
0

0
�� + �w

1 − �G̃ii + G̃ij���� + �w�
� ,

�A4�

which straightforwardly results in Eq. �21�.
The elements of the scattering matrix T̂ depend on the

diagonal and off-diagonal matrix elements of the effective

resolvent, G̃ii and G̃ij, respectively. The effective Hamiltonian
describes the ideal lattice characterized by complex param-
eters �̃ and w̃, and thus its eigenfuctions are the Bloch waves
given by Eq. �13� with effective dispersion described by Eq.
�25�. This allows the real-space matrix elements of the resol-
vent to be expressed via the reciprocal-space ones and then,
via similar elements of the resolvent for ideal crystalline lat-
tice,

G̃ii��� =
1

N
�
k

1

� + �̃ − w̃Sk

=
w

w̃N
�
k

1

�w/w̃ + �̃w/w̃ − �0 − �cryst�k�

=
w

w̃
Gii

cryst�w�� + �̃�
w̃

− �0� , �A5�

with Gii
cryst���=N−1�k��−�cryst�k��−1 being the crystalline re-

solvent characterized by the crystalline dispersion, �cryst�k�,
given by Eq. �14�, and

G̃ij��� =
1

N
�
k

e−ikRij

� − �̃��,k�
=

1

w̃ZN
�
k
� � + �̃

� − �̃��,k�
− 1�

=
� + �̃

w̃Z

1

N�
k

1

� − �̃��,k�
−

1

w̃Z
, �A6�

where N−1�k��− �̃�� ,k��−1= G̃ii���. Equations �A5� and �A6�
justify the expressions for the matrix elements of the effec-
tive resolvent given by Eq. �22�.

APPENDIX B: NUMBER OF INFECTED SITES
WITHIN THE CPA

The aim of this appendix is to derive Eq. �23� for the
number of infected sites as a function of time. It is conve-
nient to find the Laplace transform I��� of the function I�t�
and then use the inverse transform

I�t� =
1

2�i
�

�−i


�+i


e�tI���d� �B1�

to reveal Eq. �23�. The Laplace transform I��� is given by
Eq. �11� in which, within the CPA, the averaged resolvent
matrix element should be replaced by the matrix element of
the effective resolvent,

I��� =
1

N
�
ii0

N

G̃ii0
��� =

1

N
�
ii0

N
1

N�
k

e−ik·Rii0

� − �̃��,k�
. �B2�

Bearing in mind the identity �ie
−ik·Rii0 =N�k,0, we obtain

I���= ��− �̃k=0�−1. Substitution of this expression into Eq.
�B1� gives

I�t� =
1

2�i
�

�−i


�+i
 e�t

� − �̃k=0

d� . �B3�

The effective dispersion �̃k depends on the the effective
fields w̃��� and �̃��� which are analytic functions of � ev-
erywhere except the finite interval on the real axis �branch
cut�, �� ��min,�max�, where the density of states of the ef-
fective Hamiltonian is finite �see, e.g., �34� and references
therein�. The contour of integration in Eq. �B3� can be trans-
formed into a closed one around the branch cut and thus,
taking into account that the real part of the integrand is a
continuous function through the branch cut but the imaginary
part changes sign, Eq. �23� follows from Eq. �B3� and Eq.
�24� can be derived in a similar fashion.

APPENDIX C: EQUATION FOR THE BAND EDGE

The two self-consistency equations �21� can be recast in
the following form:

�
0


 �� − �w

1 − �G̃ii − G̃ij���� − �w�
�wij�dwij � F−��̃,w̃,�� = 0,

�C1�
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�
0


 �� + �w

1 − �G̃ii + G̃ij���� + �w�
�wij�dwij � F+��̃,w̃,�� = 0.

�C2�

For any value of � in the complex plane, these equations can
be solved and two complex fields �̃��� and w̃��� can be
found. On the real axis for �, ���max, both fields are also
real, �̃���= �̃���� and w̃���= w̃����, with �max being the
branching point. In this range of �, it is convenient to rewrite
Eqs. �C1� and �C2� in the following form:

��̃� =�−�w̃�,�� ,

�̃� =�+�w̃�,�� ,
� �C3�

where �� are multivalued functions of w̃� for fixed �. If �
��max, these contour lines usually cross at two points one of

which corresponds to the physical solution. At the branching
point �=�max, these two solutions merge and the condition
for this is

��−

�w̃�
=

��+

�w̃�
, �C4�

which together with Eqs. �C1� and �C2� or with Eqs. �C3�
allows the location of the upper band, �max, to be found. Eq.
�C4� can be rewritten in the more elegant but equivalent
form given by Eq. �26�. Indeed, differentiation of Eqs. �C1�
and �C2� with respect to w̃� gives

���

�w̃�
= −

�F�

�w̃�
� �F�

��̃�
�−1

, �C5�

from which Eq. �26� follows straightforwardly with the use
of Eq. �C4�.
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